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ABSTRACT

A model for laser-induced electrolytic deposition on a semiconductor surface

is developed. The laser induces two effects in the surface: thermal

heating, which results in a thermal potential, and the Dember effect in

which excited electrons and holes diffuse at different rates. The model is

compared with experiment, and the ring-shaped deposit discovered is

reproduced in the calculation.
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I. Introduction

In a previous paper we have presented experimental results of laser-

induced deposition on a semiconductor surface from an electrolyte solution.

CuSO 4 and KAu(CN)2 were dissolved in aqueous solution above a Si or GaAs

surface. A copper vapor laser (A = 510.6 nm, f = 10 kHz, Tpulse = 20 ns)

illuminated the surface. This caused the deposition of copper or gold onto

the surface of the semiconductor. In the early stages of the deposition

process, the deposit was a ring shape which was subsequently filled in later

in the process. In this paper we develop a theoretical model for the

deposition process, especially its early stages. It is hypothesized that

the total effect is the sum of two constituent parts, those being a thermal

component and the Dember component.
2 These together cause an electromotive

potential between the dark and illuminated areas of the surface, and this in

turn creates a current through the solution.

The goal of this effort is to verify the above hypothesis and to better

understand the relationship between the thermal and Dember effects. To this

end, we have used a series of coupled differential equations to describe the

coupling between temperature and potential, and also the behavior of the

non-equilibrium carriers resulting from the Dember effect. We then assume

that the surface acts as a battery and thus induces a current in the

neighboring solution. This results in a cathodic reaction in the dark area

and an anodic reaction in the illuminated area, yielding the experimentally

observed deposited ring. Thus the laser produces both the anode and the

cathode for the reaction.



As mentioned in our previous paper, there has been considerable effort

devoted to laser-induced microchemistry. Gaseous deposition has been well

3-6 8,studied, and some theoretical work has also been done. Deposition

9-11
from liquid phases is also known. The present calculation differs from

these significantly, since here the laser is used to generate the potential

necessary for an electrolytic reaction.

Light-induced electrolyte deposition is well documented in the

literature. Early work includes the nucleation of palladium clusters on

photosensitive TiO., films. 12 Yoneyama et al13 irradiated one side of a thin

TiO2 wafer and reported the deposition of palladium onto the dark surface

from a Pd(NO3 )2 solution. Kobayashi et a114 deposited ruthenium oxide and

platinum on the illuminated and dark sides of a TiO2 crystal, respectively.

Finally, palladium films were deposited on TiO 2 surfaces by millisecond UV

illumination. 
15

More relevant to the present work is the photochemical deposition of

16
metals onto p-silicon. Electron-hole pairs are photogenerated, and the

electrochemical reaction occurs as a result of an externally applied

potential. By masking the light source, deposition in any arbitrary pattern

17
can be accomplished. Similarly, instead of applying an external

potential, a metal anode is placed in contact with the silicon wafer some

distance away from the area to be plated. The cathodic reaction then occurs

as above. Reversible imaging techniques, using photoelectrochemistry, have

also been of interest. 18 Finally, Bunkin et al19 have measured the

temperature distribution of temperature and charge in a laser-heated

electrolyte.

. . .. . __! _ _ _ _I NI



Early theory was developed by M6llers et al in a paper concerned with

the origin of the photocatalytic effect. This work was continued bv

21
Memming. It is useful to distinguish between processes requiring

electrodes and the so-called electroless processes. The present work is

concerned with the electroless process, i.e., no external potential is

required for the reaction to proceed. The advantage, of course, is

experimental simplicity and flexibility. The electroless process depends

only on the laser-induced potential for the redox reaction.

In Section II we present the theory behind the calculation. In Section

III we justify the various approximations made. These approximations also

yield some physical insight and therefore constitute part of our result. We

also present our numerical data and compare them with experiment. Section

IV contains a brief summary.

II. Theory

The laser-induced electric potential at a semiconductor surface depends

on two effects: the thermo-electric effect and the Dember effect. The

corresponding thermal emf and Dember photon emf are of the same order of

magnitude. We shall discuss these two effects separately in what follows.

With respect to the thermal emf, we can temporarily ignore the

electron-hole pair production induced by the laser beam and consider the

laser simply as a heating device. In the bulk, we can consider each point

to be in local thermal equilibrium, but there is a macroscopic temperature

gradient caused by the absorption of energy from the laser beam. The

equation of entropy conservation is



3S + I )3t sJ i'

where S is the entropy density, J is the entropy flux, and P is the heatS s

absorption rate per volume,

Ps = 2aP0 e ,2az (2)

where P0 is the laser power and a is the absorptivity. The depth from the

surface is represented by z. We assume the laser beam to be vertical to the

surface, and the laser energy will eventually become heat.

Since we are presently ignoring the nonequilibrium carriers (created

pairs), we can assume that there exist linear relations between the currents

and the generalized forces, and that the relations are valid near

equilibrium. These are

J - L rVT L seii - L (3)s ss se ~e Lh

L T L VP L 0 (4)

e es - Leeo'e - LehVh

h= LhsT - Lhe VPe - Lhh)h (5)

where the coefficients L must satisfy the Onsager reciprocal relation
2 2

mn

L = L ,(6)
mn nm



with L = K/T, where T is the the temperature, K is the coefficient ofss

thermal conductivity, and and are the chemical potential of electrons

and holes, respectively. We also suppose that the Coulomb term (eV)

dominates (i.e., the mean free path is very short), so that the gradients of

the chemical potentials can be written as

Vjj = eE (7)

S =  , (8)

where t is the electric field.

Under the conditior of zero current, the thermal potential is derived

as

r (Lhs-Les)VT
Uthermal = e( 2LheL-eeLhh) d. (9)

where Z represents a closed loop. If the surface is entirely within a

region where the coefficients L are constant, then Uthermal is identically

zero. The thermal potential on the surface is proportional to the

temperature difference along it. If, as it turns out to be the case, the

evolution of the temperature is essentially independent of the evolution of

the charge carriers, then the temperature can be calculated simply by

solving the diffusion equation

T 2
Ct= KV2T + P , (10)



where C is the heat capacity and K is the heat conductivity of the

semiconductor.

Now we consider the Dember effect, which is due to the different

mobilities of electrons and holes and also to the pair production of local,

non-equilibrium carriers, 6pe and 6p h These must obey the diffusion

equations

H e 2
3t = DeV 6Oe + P - 4P e (Ii)

a6 Ph 2 1
- = DV 6P + P -- 1P (12)
@t h h T h

where P is the pair production rate, T is the lifetime of the created pair,

and D and Dh are the diffusion constants for holes and electrons,e h

respectively. The pair lifetime is on the order of .01 s and is thus very

long on the time scale of this problem. Thus the last term will be

iegiected, i which case we can readily calculate the Dember emf as

= I (De 6P e-D hv6h)

Dember " f e(Lee+Lh- 2Leh) d . (13)

We can get the Dember potential along the surface simply from Pe and 6ph,

provided all coefficients in (13) are constant.

The local deposition rate on the surface is equivalent to the normal

component of the electric current across the semiconductor-electrolyte



interface. Thus the problem reduces to calculating the current distribution

at the surface. Since the electrical conductivity of a I M electrolyte

3 -1 -, - 4-i -isolution is typically about 10 . cm compared to a value of 10 12 cm

for an n-type bulk semiconductor, as a first approximation we can ignore the

presence of the electrolyte and treat the laser-irradiated surface as a

battery. Given the electrical potential at the surface, we can now

calculate the current distribution in the electrolyte.

The total potential is V = U therma + U Dember, which forms the boundary

condition for solving the Laplace equation in the electrolyte. We assume

the conductivity of the electrolyte is constant and small, and that far from

the surface and the laser focal point, the potential must tend toward a

constant. Hence we can find the normal component of the electric field

above the semiconductor surface by taking the normal gradient, so that Ohm's

law can be used to calculate the normal current.

III. Results

A certZain difficulty is encountered in choosing the parameters to use

in reproducing the experimental data. In most cases, the data was estimated

from a standard text,2 3 using values typical for semiconductors, and also

1
from our experimental work. In many cases we make only an order of

magnitude estimate, and so the qualitative nature of our results must be

seen in that light.

Another difficulty was the stability condition of the differential

24
equation. For time steps of one nanosecond, we were constrained to use a

-4
length step of 4.5 x 10 cm. This is much too large to accurately

reproduce the experiment in which the focal point size was I to 10 tm.



Since the leungth scale is proportional to the square root of the time step,

in orde- to reproduce the experimental scale we would have to increase the

number of time steps by two orders of magnitude. This is computationally

inconvenient, and thus we have used a focal point size approximately ten

times that of the experiment.

Finally, since the laser intensity is a function of focal point size,

we found that in order to accomodate our larger focal points, we had to

decrease the laser intensity. All other parameters were estimated as

closely as possible to experimental conditions. The pair production rate

was chosen to match the experimentally observed potentials. The parameters

we used are listed in Table I.

The relevant data to match from the experiment are a temperature

gradient of 20 K from the center of the spot to the outside rim. Further,

it is supposed that the Dember effect and the thermal effect yield

potentials of about the same order of magnitude. Because the experiment

takes place on an n-doped semiconductor, it may be assumed that the

concentration of holes is very small compared to the number of electrons.

For this reason, all parameters proportional to the hole population may be

taken as zero, including Lhh' Lhe and Lhs. Under this circumstance, Eq. (9)

becomes

L AT
es

Uthermal eL ' k16)
ee

and Eq. (13) becomes



(D e6oe - D h 6h)

Dember eL
ee

Both Eqs. (16) and (17) are evaluated across the surface of the

semiconductor.

From the experimental result of AT = 20 K and the estimate of the

thermal potential at about 80 mV, it follows that L /eL e 4 x 10- 3 V/K.es ee

In turn, Lee can be calculated from the electron mobility in the substrate,

Dn
See

Lee -,T . Similarly, UDember can be calculated from Eq. (17) using the

same data.

We are further assuming that all the relevant physics occurs in the

transient regime, i.e., within one laser pulse. This follows from the large

difference in time scales between pulse length and pulse frequency. As will

be illustrated, both the Dember and thermal effects die off within this time

frame. Of course, any metal deposition on the surface will dramatically

change the results of subsequent pulses.

The numerical method used is described as fillows. The non-equilibrium

charge carrier concentration was numerically solved from Eqs. (11) and (12),

while the temperature was calculated from Eq. (10). It was found that the

contribution of the second term on the RHS is negligibly small, and so we

are left with a simple diffusion equation with a source term. The results

of this calculation were then inserted into Eqs. (16) and (17). AT was

calculated with respect to an ambient temperature (300 K), and the charge

carrier concentration was assumed to be zero just outside the surface.
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Figure 1 shows the thermal potential as a function of radial distance

from the center of the focal point and time. The laser is on for the first

20 ns and then switched off. The thermal potential increases for the

duration of the laser pulse and then decays very slowly with time. The

variation of the potential with respect to radius is predictable; it

declines monotonically with distance from the focal center.

Figure 2 illustrates the Dember potential, also as a function of radius

and time. This increases dramatically as a function of time, and then

decreases even more dramatically as the laser is turned off. While the

thermal potential never rises above 100 mV, we find that the Dember emf

reaches almost 300 mV just before the laser is turned off. It then decays

to almost zero within another 20 ns. Indeed, since the electron mobility is

larger than the hole mobility, as the electrons move outside, the potential

in the center becomes positive. After the laser is turned off, the holes

also begin to move away from the center, and the result is that the region

of maximal potential moves away from the focal point. At long times, the

potential near the center becomes increasingly negative, down to about -20

mV.

Figure 3 illustrates the total potential over 1000 ns. For the

duration of the laser pulse, this is dominated by the Dember potential,

whereas at long times the thermal potential is the leading term. This dies

away quite slowly. The time period shown is equivalent to a microsecond,

but the next laser pulse occurs almost a millisecond later. At this time,

even the thermal potential would be close to zero, and hence the



approximation of treating each laser pulse as an independent event is

justified.

The current is proportional to the space derivative of the potential.

This accounts for the ring-shaped deposit structure, since it is clear that

the potential must be symmetric around the focal point. The greatest

variation in potential occurs directly when the laser is turned off, at

which point the Dember effect is strongest, and decays quickly as a function

of radial distance. We suppose, however, that most deposition is a result

of the thermal effect, which persists for long times and whose derivative

remains relatively constant as a function of radius. Since deposition is

ultimately a diffusion-limited process, the long-time behavior of the system

should predominate.

Figure 4 is a graph of the actual current (except for a constant

denoting the conductivity of the solution), calculated by solving the

Laplace equation in a solution above the surface. This is shown for 30 ns

and illustrates the effect just discussed. The flat area near r = 0 is the

region in which the current is negative, e.g., the region in which surface

etching occurs rather than deposition.

Several observations can be made. First, the deposition rate is

greatest while the laser is still on. This shows that the Dember effect

contributes to the deposition rate, but since it falls off dramatically

immediately after the laser is turned off, we suggest that the thermal

effect predominates overall. Further, it may be supposed that concurrent

with the Dember effect are chemical reactions on the surface, occurring as a

result of the non-equilibrium electrons. Thus the moral of the story is
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that net deposition would be increased if the temperature differential

between the irradiated and dark portions were as large as possible. For

short laser pulses, the total effect of the Dember potential is small, and

for longer pulses the problem of chemical rearrangement will probably become

significant. Of course, we have completely neglected difficulties which

might be associated with melting of the surface, or other effe'ts due to

intensive heating.

IV. Summary

We have reproduced the experimental results of a laser-induced

electrolytic experiment. We have shown that the ring-shaped deposition

follows logically from the potential distribution induced by the laser. We

have shown that both the Dember and thermal effects contribute to the

process, but that the thermal effect predominates because of its long-

lasting effect. We have demonstrated that these two effects can be treated

as independent phenomena, and therefore the amount of work required in the

calculation is minimized.
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TABLE I

Quantity Svmbol Value

Diffusion constant - electrons D 40 cm2/se

Diffusion constant - holes Dh  10 cm2/S

Heat conductivity of semiconductor K 107 erg/cm-s

Heat capacity of semiconductor C 108 erg/K'mol

Laser intensity P0  0.01 mW

Pair production rate P 1021 s- 1
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Figure Captions

1. Illustration of the thermal potential, in mV. Note the slow decay of

the potential after the laser is turned off.

2. Illustration of the Dember potential, in mV. Note the rapid decay

after the laser is turned off. Also note that as the holes move away

from the center, a slightly negative potential at the very center

appears at long times.

3. Illustration of the total potential, being the sum of the thermal and

Dember effects. Observe that this is shown out to 1000 ns, long after

the Dember effect has died away. The phenomena is thus almost entirely

due to the thermal effect.

4. A representation of the deposition rate, showing positive current,

i.e., where cations are flowing toward the surface. The flat region at

r = 0 is the area where etching occurs because of the anodic reaction.

The ring shape is clearly visible. While the current is strongest

while the laser is still on, it remains strong even after the laser is

turned off.
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